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Problem Set 7

Problem 1

(a) Let

fn(x) =
x

1 + nx
, x ∈ [0,∞).

Then, given x,

f(x) = lim
n→∞

x

1 + nx
= 0.

Given ε > 0, let N be any integer > 1
ε . For n > N ,

|fn(0)− f(0)| = 0 < ε,

and for x > 0,

|fn(x)− f(x)| =
x

1 + nx
=

1
1
x + n

≤ 1

n
< ε.

Thus, fn(x) converges to f(x) uniformly.

(b) Let

fn(x) =
sinnx

n
, x ∈ (−∞,∞).

Then, given x,

|f(x)| = lim
n→∞

∣∣∣∣ sinnxn

∣∣∣∣ ≤ lim
n→∞

1

n
= 0,

so f(x) = 0. Given ε > 0, let N be any integer > 1
ε . For n > N ,

|fn(x)− f(x)| =
∣∣∣∣ sinnxn

∣∣∣∣ ≤ 1

n
< ε.

Thus, fn(x) converges to f(x) uniformly.

(c) Let

fn(x) =
nx2

1 + nx
, x ∈ [0,∞).

Then, given x,

f(x) = lim
n→∞

nx2

1 + nx
= lim
n→∞

x2

1
n + x

= x.

Also,

|fn(x)− f(x)| =
∣∣∣∣ nx2

1 + nx
− x
∣∣∣∣ = ∣∣∣∣nx2 − (1 + nx)x

1 + nx

∣∣∣∣ = x

1 + nx
,

so fn(x) converges to uniformly to f(x) just as in part (a).

(d) Let

fn(x) =
nx

1 + n2x2
, x ∈ [0, 1].

Then,

f(x) = lim
n→∞

nx

1 + n2x2
= lim
n→∞

x
1
n + nx2

= 0.

Next, observe that ∣∣∣∣fn( 1

n

)
− f

(
1

n

)∣∣∣∣ = 1

2
− 0 =

1

2

for all n. This shows that for ε = 1
2 , there is no N > 0 such that |fn (x)− f (x)| < ε for all n ≥ N and

x ∈ [0, 1]. In other words, fn(x) does not converge to f(x) uniformly.
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Problem 2

(a) For R > 0, let

fn(x) =
n

x+ n
, x ∈ [0, R].

For given x, limn→∞ fn(x) = 1. Furthermore,

|fn(x)− 1| =
∣∣∣∣ n

x+ n
− 1

∣∣∣∣ = x

x+ n
≤ R

n
.

By Theorem 22.2A, fn(x) converge uniformly.

(b) Let

fn(x) = cos
x

n
, |x| < R.

For given x, limn→∞ fn(x) = cos 0 = 1. By the mean value theorem, there is some c with∣∣∣cos x
n
− 1
∣∣∣ = ∣∣∣(− sin c)

x

n

∣∣∣ ≤ R

n
.

Again, by Theorem 22.2A, fn(x) converge uniformly.

(c) Let

fn(x) =

∞∑
k=1

xk

k2
, x ∈ [−1, 1].

We have ∣∣∣∣xkk2
∣∣∣∣ ≤ 1

k2
,

and
∑∞
k=1

1
k2 converges, so fn(x) converges uniformly by Theorem 22.2B.

(d) Let

fn(x) =

∞∑
k=1

sinnx

x2 + n2
, x ∈ (−∞,∞).

We have ∣∣∣∣ sin kxx2 + k2

∣∣∣∣ ≤ 1

x2 + k2
≤ 1

k2
,

so fn(x) converge uniformly by theorem 22.2B as in (c).

Problem 3

Suppose
∑∞
n=1 an is absolutely convergent. Then,

|an sinnx| ≤ |an|

for x ∈ (−∞,∞) and
∑∞
n=1 |an| converges. Thus,

∑∞
n=1 an sinnx converges uniformly on (−∞,∞) by the

Weierstrass M-test.

Problem 4

Let
un(x) =

x

n(x+ n)

for x ∈ [0,∞). We show that
∑∞
n=1 un(x) converges uniformly in an interval [0, R] for any R > x. We have

0 ≤ un(x) =
x

n(x+ n)
≤ R

n2
.

By Theorem 22.2B, our claim follows. Then, by Theorem 22.3,
∑∞
n=1 un(x) is continuous at x.

It is important to note that we did not show
∑∞
n=1 un(x) is uniformly convergent on [0,∞). This does

not follow from the fact that it converges uniformly on [0, R] for every R and is, in fact, false.
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Problem 5

Consider the sum
f(x) = 1 + 2x+ 3x2 + 4x3 + · · · .

Using the ratio test,

lim
n→∞

∣∣∣∣ (n+ 1)xn

nxn−1

∣∣∣∣ = lim
n→∞

n+ 1

n
|x| = |x|.

Thus, f(x) has radius of convergence 1. By Corollary 22.4, for x ∈ (−1, 1),∫ x

0

f(t)dt =

∞∑
n=0

n+ 1

n+ 1
xn+1 =

1

1− x
− 1 =

x

1− x
.

Then, by the fundamental theorem of calculus,

f(x) =
d

dx

(
x

1− x

)
=

1 · (1− x)− x · (−1)
(1− x)2

=
1

(1− x)2
.

Problem 6

Let P : R2 → R3 be

P (x, y) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
,
−1 + x2 + y2

1 + x2 + y2

)
and d : R2 × R2 → R be

d
(
(x1, y1), (x2, y2)

)
=
√

1− P (x1, y1) · P (x2, y2).

In general, if v, w ∈ Rn and ‖ · ‖ is the standard Euclidean norm, then ‖v−w‖ =
√
‖v‖2 + ‖w‖2 − 2v.w,

so

d
(
(x1, y1), (x2, y2)

)
=

√
1 + 1− 2P (x1, y1).P (x2, y2)

2
=

1√
2
‖P (x1, y1)− P (x2, y2)‖,

using the fact that P maps onto the unit sphere. Therefore, the three parts of this problem follow from the
same statements for the Euclidean norm because P is one-to-one.

(1) For (x1, y1), (x2, y2) ∈ R2,

d
(
(x1, y1), (x2, y2)

)
=

1√
2
‖P (x1, y1)− P (x2, y2)‖ ≥ 0.

Furthermore, d
(
(x1, y1), (x2, y2)

)
= 0 if and only if P (x1, y1) = P (x2, y2) if and only if (x1, y1) =

(x2, y2).

(2) Compute

d
(
(x1, y1), (x2, y2)

)
=

1√
2
‖P (x1, y1)− P (x2, y2)‖ =

1√
2
‖P (x2, y2)− P (x1, y1)‖ = d

(
(x2, y2), (x1, y1)

)
.

(3) Compute

d
(
(x1, y1), (x2, y2)

)
+ d
(
(x2, y2), (x3, y3)

)
=

1√
2
(‖P (x1, y1)− P (x2, y2)‖+ ‖P (x2, y2)− P (x3, y3)‖)

≥ 1√
2
‖P (x1, y1)− P (x3, y3)‖

= d
(
(x1, y1), (x3, y3)

)
.


